

Intelligence at the Speed of Light[™]

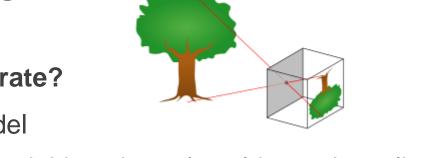
Calibrate and Align Cameras and Lidars

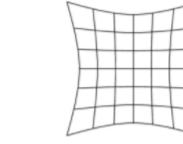
Cepton Webinar Series #2 2022-02-18

Table of Contents

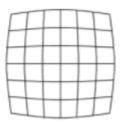
- 1. Calibrate Cameras
- 2. Calibrate Lidars
- 3. Camera-Lidar Fusion
- 4. Align Multiple Lidars
- 5. Time Synchronization
- 6. Topics for future episodes
- 7. We are hiring interns and new college grads!

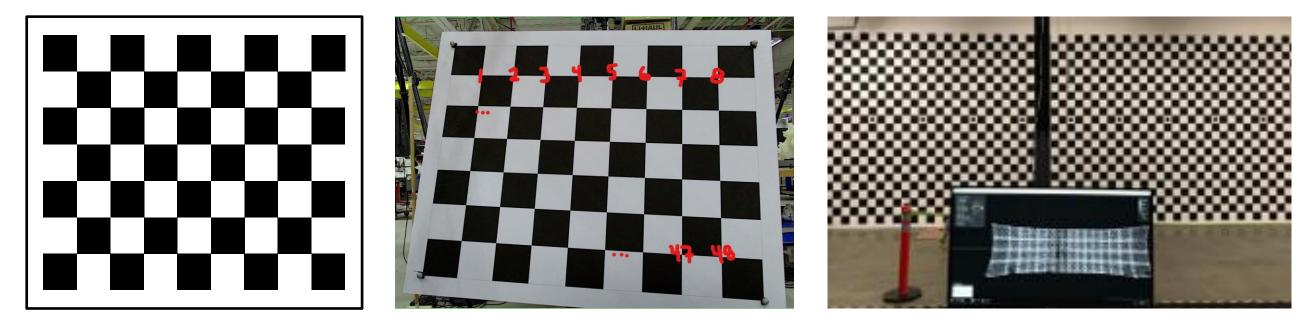
Calibrate Cameras


Why do we need to calibrate?


- Ideal lens: Pin-hole model
 - All angles are preserved. Lines in real world remain as lines in image: Grid is not distorted 0
- All lenses have distortion
 - Pincushion and barrel distortions (Radial distortions only) Ο
 - DNN usually doesn't care. Ο
 - Vital to alignment! 0

Select camera for best calibrated results


- Avoid cameras with wide FOV (<u>no fisheye</u>). Too much distortion is hard to correct
- Auto-focus or auto-white balance can be trouble. Lens or aperture change may change distortion.
- Choose <u>small aperture</u> so the whole picture is focused.
- For moving applications, important to use <u>fast shutter speed</u>.



Calibrate Cameras (continued)

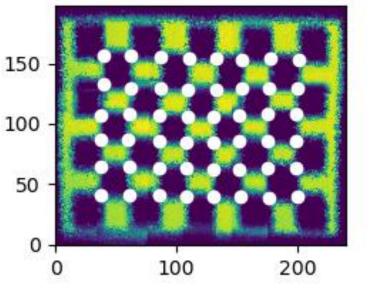
How to calibrate Cameras?

- Use checkerboards
- > Feature extraction of checkerboard corners:
 - > Avoid bias and ambiguity with a bigger convolution kernel
- $LOSS = \sum (C_i Distort(Transform(C_i^{gt}))^2)$ > Don't look at individual pixels or reconstruct lines.
- > Establish a loss function on the extracted features. (e.g. sum of squares of the error compared with ground truth)
- > Introduce rotation/translation (6 degrees of freedom) as free parameters or strictly control your target placement.
- Beware of "period skip". Introduce "anchor" into your checkerboard if needed.

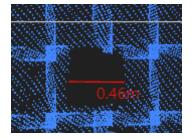
Cepton is hiring interns and new college grads. Check out our LinkedIn or Handshake job page 3

4 Cepton is hiring interns and new college grads. Check out our LinkedIn or Handshake job page

Calibrate Lidars


Do I need to calibrate lidars?

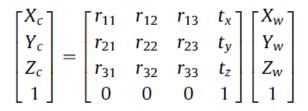
- > All lidars from Cepton are already calibrated out of the box.
- > A good idea to confirm correctness:
 - No need to do a full space calibration
 - > Use a laser pointer measurement tool to try out a few points of interest.
 - > You can do this with CeptonViewer's measurement feature.
- > You do need to calibrate if light is optically distorted, e.g., going through a windshield.
 - > Use the same checkerboard.


How to locate the checkerboard on Lidar?

- > You need to get Lidar's "read" of the checkerboard for alignment with camera.
- Understand the lidar point cloud data for calibration:
 - > They are sparse.
 - > Aggregate enough data (10 frames or more).
- ➤ Map 3D to 2D after figuring out the target plane.

Camera-Lidar Fusion

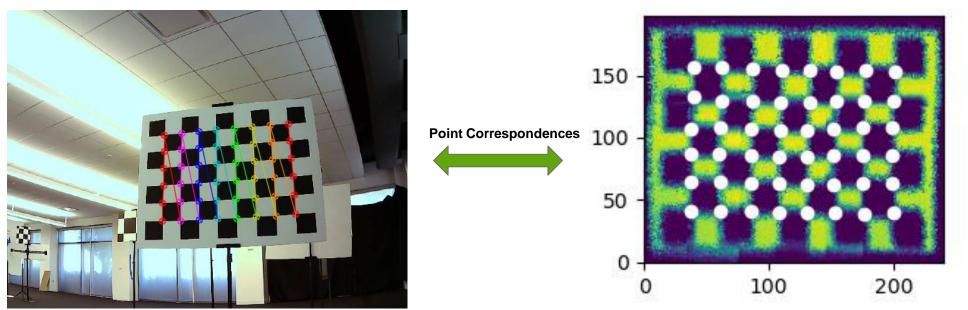
Geometrical Alignment

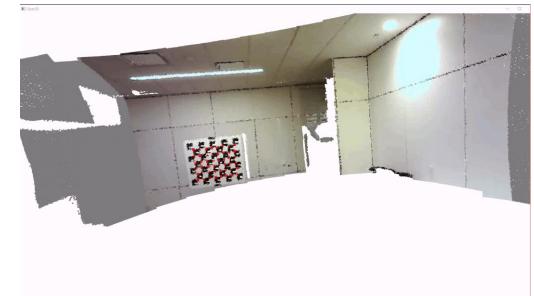

- > Work with calibrated data only.
- Goal: Figure out the relative rotation and translation between Lidar and camera coordinates.
 - \succ Usually put into a 4x4 matrix (just like in computer graphics)
- \succ Best to choose a world coordinate that matches the perception system (center of car)
 - > Figure out the transformation from each sensor to the "world".

How to do camera-lidar alignment

- Cannot talk about alignment without fixture.
- \succ Fixtures lock each sensor tightly onto the "system" (the car).
- > Naïve measurements of 6-DOF works for low accuracy.
- > Fixed checkerboard placement relative to "system" allows reuse of calibration code.
- \succ Automatic calibration is possible. (More on this later)

Camera-LiDAR Fusion


- Camera-LiDAR platform
 - An X-90 Sensor + A camera


Front View

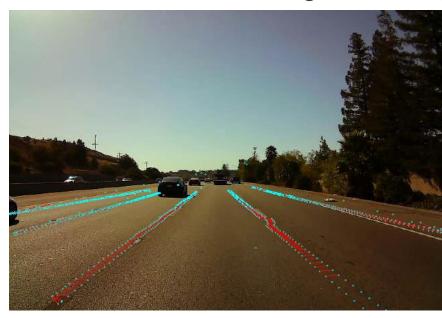
- Camera-LiDAR Calibration
 - Camera Intrinsic Calibration + Camera-LiDAR Calibration with Checkerboard

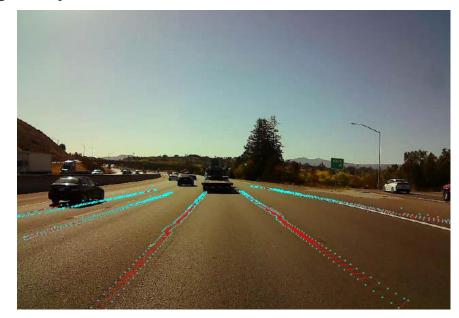
Detected 2-D Corners in Image Frame

Top View

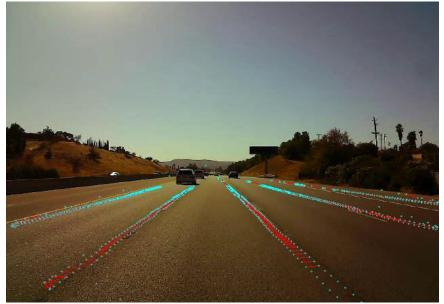
Detected 3-D Corners in LiDAR Frame

Camera-LiDAR Fusion


- Camera-LiDAR platform
 - An X-90 sensor + a camera



Front View



• Detect lane markings on the highway.

Our Lane Detection Results Re-projected onto Image

Top View

nts reserved

Align Multiple Sensors

When there is sufficient overlap (e.g., Camera + Lidar case)

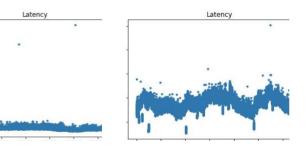
- > Strategy: (with a moveable checkerboard)
 - > Align pairwise first by moving the checkerboard around
 - > Optional global optimization step to "close the loop"
- > Strategy: (with scenery)
 - > Alignment between cameras is well established (photo stitching algorithms)
 - Alignment between lidars can use direct ICP with normalized point cloud
 - > Alignment between camera and lidar still relies on the "feature extract" technique.
 - > Use checkerboard, corner of a room, door frame and other extractable features that have both geometry and color differences.
- > Strategy: (machine learning)
 - Black box.

Align Multiple Sensors (continued)

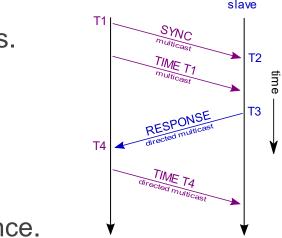
When there is very small overlap or no overlap

- > Strategy: (with global ground truth)
 - > Define world coordinate by ground truth (e.g., a room with several existing checkerboard walls)
 - > Align each sensor independently to world coordinate.
 - > Take care of precise positioning of your "car" for repeatability. Think about a "fixture" with location screws.
- Strategy: (moving targets)
 - > Moving target with constant linear speed.
 - > Require correct time synchronization
 - \succ Can use large amount of aggregated data (e.g., driving data, using roadside objects to align)
- > Strategy: (rotating sensors)
 - > If sensors can be put on a rotational platform with constant rotation, same as above with slightly different math.

Time Synchronization


Why do we need to synchronize?

- > Cameras and Lidars do not take measurements at the same time.
- Data arrival times on computer are highly unreliable esp. with high bandwidth usage.
 - > It may work when you tested and fail in the field.
 - > Performance is different for different ethernet devices. (including switches in the middle)
 - Don't leave it to luck.
- > Synchronization is not needed for static scene, e.g., some calibration scenarios.
- > Synchronization is import for any moving scenario.


How to synchronize?

- > Use (Precision Time Protocol) PTP for Lidar. 802.1AS or other IEEE1588 based mechanisms.
- > No new wires, all based on the ethernet.
- Linux open source support by default (ptp4l)
- Some cameras also support PTP
- > For the cameras that don't support PTP, use a fixed frame rate and calibrate the time difference.

Latency of direct vs. switched network

Time Synchronization (continued)

Concept of a "frame"

	Camera	Lidar
What is a "frame"	Apicture	A sequence of measurements that cover
Timestamp	Usually global shuttered, with a single timestamp	Measured point-by-point, with each poin timestamp.
Trigger	Electrically controlled, either fixed time intervals or dynamically triggered.	Mechanically controlled. Usually cannot

- Frame is a natural unit of perception.
- Different sensors have different frame timings and different frame rates. \succ

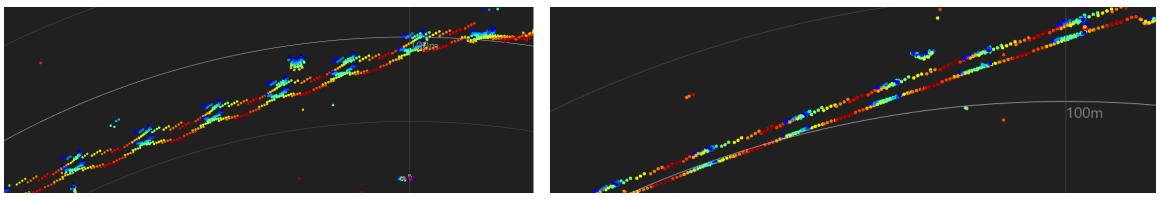
How to do sensor fusion at frame level

- Use "most recent frame" from all sensors, do this at fixed interval.
 - Introduce long latency up to a frame \succ
 - Easiest to implement \succ
- Use lidar frames as they arrive and take most recent camera data \succ
 - Identify the "primary" lidar, as lidars don't have synchronized frames between each other. (Usually the front facing one) \succ
 - Camera frame rate can be tuned to be fast enough to avoid any latency caused problems. \succ
- Use "fixed time interval" for lidar sensor (usually based on camera frame rate):
 - Needs good understanding of how the lidar scan works \succ
 - Requires normalization of point cloud density
- Cepton is hiring interns and new college grads. Check out our LinkedIn or Handshake job page 11

er the whole field of view.

int carrying its own

t guarantee specific timing.

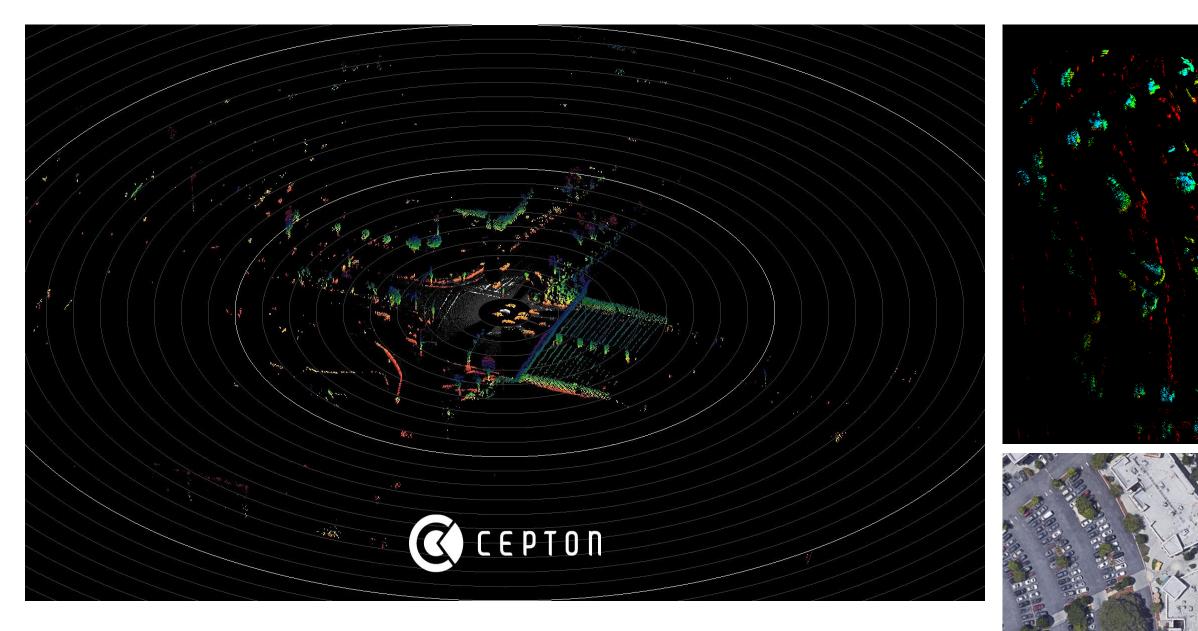

Time Synchronization (continued)

Motion Compensation

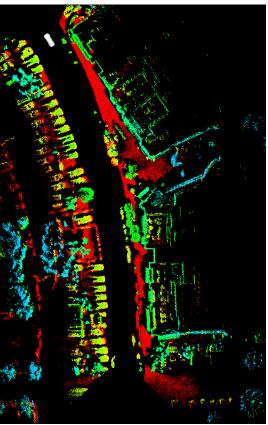
- Every camera frame and every single lidar point has its own timestamp.
- Perception algorithms work best with a fixed point in time.
- Project measurement positions to a fixed time by assuming constant speed of motion (object or sensor itself)

 $\vec{S}(t) = \vec{S_0} + \vec{v}\Delta t$

- This is a bigger topic beyond the scope of this talk:
 - Connected to ego-motion algorithm
 - Turning and linear motions are different



Visualized time-within-frame when passing a bridge. Before and after motion compensation.


Cepton is hiring interns and new college grads. Check out our LinkedIn or Handshake job page 12

System with 6 Lidars

SLAM Aggregation (Single Lidar)

Future Topics For Webinar

- \geq ROS2 integration in-depth.
- \succ Python SDK and offline data processing.
- > Advanced SDK and SDK internals.
- ➤ MMT and scan pattern.
- \succ Cepton's perception system and CR file.

Resources

- Developer Center (<u>https://developer.cepton.com</u> coming soon...)
 - This and all other webinars
 - Download SDK package
 - Download Cepton Viewer executable
- Official <u>cepton.com</u>
- > JOB postings: <u>LinkedIn</u> and <u>Handshake</u>

